Chiral equivariant cohomology

General Introduction
<]]> 
Search results
<]]> 
Online References
<]]> 
Paper References
<]]> 
Definition
<]]> 
Properties
<]]> 
Standard theorems
<]]> 
Open Problems
<]]> 
Connections to Number Theory
<]]> 
Computations and Examples
<]]> 
History and Applications
<]]> 
Some Research Articles
arXiv:1007.3015 Chiral equivariant cohomology of a point: a first look from arXiv Front: math.AT by Andrew R. Linshaw The chiral equivariant cohomology contains and generalizes the classical equivariant cohomology of a manifold M with an action of a compact Lie group G. For any simple G, there exist compact manifolds with the same classical equivariant cohomology, which can be distinguished by this invariant. When M is a point, this cohomology is an interesting conformal vertex algebra whose structure is still mysterious. In this paper, we scratch the surface of this object in the case G=SU(2).
<]]> 
Other Information
<]]> 
Comments Posted
<]]> 
Comments
There are no comments.